Logo - springer
Slogan - springer

Birkhäuser - Birkhäuser Mathematics | Separable Type Representations of Matrices and Fast Algorithms - Volume 2 Eigenvalue Method

Separable Type Representations of Matrices and Fast Algorithms

Volume 2 Eigenvalue Method

Eidelman, Yuli, Gohberg, Israel, Haimovici, Iulian

2014, XI, 359 p.

A product of Birkhäuser Basel
Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$99.00

(net) price for USA

ISBN 978-3-0348-0612-1

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$129.00

(net) price for USA

ISBN 978-3-0348-0611-4

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days

Also available as a set for $209.00


add to marked items

  • Self-contained monograph with material developed over the last 30 years
  • Systematic theoretical and computational study of several types of generalizations of separable matrices
  • Many illustrative examples in different chapters of the book

This two-volume work presents a systematic theoretical and computational study of several types of generalizations of separable matrices. The primary focus is on fast algorithms (many of linear complexity) for matrices in semiseparable, quasiseparable, band and companion form. The work examines algorithms of multiplication, inversion and description of eigenstructure and includes a wealth of illustrative examples throughout the different chapters.

The second volume, consisting of four parts, addresses the eigenvalue problem for matrices with quasiseparable structure and applications to the polynomial root finding problem. In the first part the properties of the characteristic polynomials of principal leading submatrices, the structure of eigenspaces and the basic methods for computing eigenvalues are studied in detail for matrices with quasiseparable representation of the first order. The second part is devoted to the divide and conquer method, with the main algorithms also being derived for matrices with quasiseparable representation of order one. The QR iteration method for some classes of matrices with quasiseparable representations of any order is studied in the third part. This method is then used in the last part in order to provide a fast solver for the polynomial root finding problem. The work is based mostly on results obtained by the authors and their coauthors. Due to its many significant applications and accessible style, the text will be a valuable resource for engineers, scientists, numerical analysts, computer scientists and mathematicians alike.

Content Level » Research

Keywords » Eigenvalue problems - Fast algorithms - Polynomial root finder problem - Quasiseparable representations - Structured matrices

Related subjects » Birkhäuser Mathematics

Table of contents 

Part 5. The eigenvalue structure of order one quasiseparable matrices.- 21. Quasiseparable of order one matrices. Characteristic polynomials.- 22. Eigenvalues with geometric multiplicity one.- 23. Kernels of quasiseparable of order one matrices.- 24. Multiple eigenvalues.- Part 6. Divide and conquer method for eigenproblems.- 25. Divide step.- 26. Conquer step and rational matrix functions eigenproblem.- 27. Complete algorithm for Hermitian matrices.- 28. Complete algorithm for unitary Hessenberg matrices.- Part 7. Algorithms for qr iterations and for reduction to Hessenberg form.- 29. The QR iteration method for eigenvalues.- 30. The reduction to Hessenberg form.- 31. The implicit QR iteration method for eigenvalues of upper Hessenberg matrices.- Part 8. QR iterations for companion matrices.- 32. Companion and unitary matrices.- 33. Explicit methods.- 34. Implicit methods with compression.- 35. The factorization based implicit method.- 36. Implicit algorithms based on the QR representation.- Bibliography.​  

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Linear and Multilinear Algebras, Matrix Theory.