Logo - springer
Slogan - springer

Birkhäuser - Birkhäuser Mathematics | Functional Analysis in Asymmetric Normed Spaces

Functional Analysis in Asymmetric Normed Spaces

Cobzas, Stefan

2013, X, 219 p. 1 illus. in color.

A product of Birkhäuser Basel
Available Formats:

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.


(net) price for USA

ISBN 978-3-0348-0478-3

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase

learn more about Springer eBooks

add to marked items


Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.


(net) price for USA

ISBN 978-3-0348-0477-6

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days

add to marked items

  • First treatment in book form of basic results on asymmetric normed spaces The presentation follows the ideas from the theory of normed spaces, emphasizing similarities as well as differences with respect to the classical theory Detailed treatment of quasi-metric, quasi-uniform and bitopological spaces, with emphasis on completeness, compactness and Baire category​
An asymmetric norm is a positive definite sublinear functional p on a real vector space X. The topology generated by the asymmetric norm p is translation invariant so that the addition is continuous, but the asymmetry of the norm implies that the multiplication by scalars is continuous only when restricted to non-negative entries in the first argument. The asymmetric dual of X, meaning the set of all real-valued upper semi-continuous linear functionals on X, is merely a convex cone in the vector space of all linear functionals on X. In spite of these differences, many results from classical functional analysis have their counterparts in the asymmetric case, by taking care of the interplay between the asymmetric norm p and its conjugate. Among the positive results one can mention: Hahn–Banach type theorems and separation results for convex sets, Krein–Milman type theorems, analogs of the fundamental principles – open mapping, closed graph and uniform boundedness theorems – an analog of the Schauder’s theorem on the compactness of the conjugate mapping. Applications are given to best approximation problems and, as relevant examples, one considers normed lattices equipped with asymmetric norms and spaces of semi-Lipschitz functions on quasi-metric spaces. Since the basic topological tools come from quasi-metric spaces and quasi-uniform spaces, the first chapter of the book contains a detailed presentation of some basic results from the theory of these spaces. The focus is on results which are most used in functional analysis – completeness, compactness and Baire category – which drastically differ from those in metric or uniform spaces.  The book is fairly self-contained, the prerequisites being the acquaintance with the basic results in topology and functional analysis, so it may be used for an introduction to the subject. Since new results, in the focus of current research, are also included, researchers in the area can use it as a reference text.

Content Level » Research

Keywords » asymmetric norm - bitopological space - quasi-metric space - quasi-uniform space

Related subjects » Birkhäuser Mathematics

Table of contents / Preface / Sample pages 

Popular Content within this publication 



Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Functional Analysis.