Logo - springer
Slogan - springer

Birkhäuser - Birkhäuser Mathematics | Discrete Fourier Analysis

Discrete Fourier Analysis

Wong, M. W.

2011, VIII, 177p. 1 illus. in color.

A product of Birkhäuser Basel
Available Formats:

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.


(net) price for USA

ISBN 978-3-0348-0116-4

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase

learn more about Springer eBooks

add to marked items


Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.


(net) price for USA

ISBN 978-3-0348-0115-7

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days

add to marked items

  • The mathematical notions are presented both on a basic level, making thus the content accessible to a wide audience, and later on, on a more sophisticated level, which can bring students more effectively to the frontier of research
  • Pseudo-differential operators are presented in the perspectives of signal analysis
  • Exercises are included to enhance the use of the book as a textbook
  • Includes introduction to wavelets and to pseudo-differential operators

This textbook presents basic notions and techniques of Fourier analysis in discrete settings. Written in a concise style, it is interlaced with remarks, discussions and motivations from signal analysis.


The first part is dedicated to topics related to the Fourier transform, including discrete time-frequency analysis and discrete wavelet analysis. Basic knowledge of linear algebra and calculus is the only prerequisite. The second part is built on Hilbert spaces and Fourier series and culminates in a section on pseudo-differential operators, providing a lucid introduction to this advanced topic in analysis. Some measure theory language is used, although most of this part is accessible to students familiar with an undergraduate course in real analysis.


Discrete Fourier Analysis is aimed at advanced undergraduate and graduate students in mathematics and applied mathematics. Enhanced with exercises, it will be an excellent resource for the classroom as well as for self-study.

Content Level » Graduate

Related subjects » Birkhäuser Mathematics

Table of contents 

Preface.- The Finite Fourier Transform.- Translation-Invariant Linear Operators.- Circulant Matrices.- Convolution Operators.- Fourier Multipliers.- Eigenvalues and Eigenfunctions.- The Fast Fourier Transform.- Time-Frequency Analysis.- Time-Frequency Localized Bases.- Wavelet Transforms and Filter Banks.- Haar Wavelets.- Daubechies Wavelets.- The Trace.- Hilbert Spaces.- Bounded Linear Operators.- Self-Adjoint Operators.- Compact Operators.- The Spectral Theorem.- Schatten–von Neumann Classes.- Fourier Series.- Fourier Multipliers on S1.- Pseudo-Differential Operators on S1.- Pseudo-Differential Operators on Z.- Bibliography.- Index.

Popular Content within this publication 



Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Fourier Analysis.