Logo - springer
Slogan - springer

Birkhäuser - Birkhäuser Mathematics | Quantitative Arithmetic of Projective Varieties (Reviews)

Quantitative Arithmetic of Projective Varieties

Series: Progress in Mathematics, Vol. 277

Browning, Timothy D.

2010, XIII, 160 p.

A product of Birkhäuser Basel
Available Formats:

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.


(net) price for USA

ISBN 978-3-0346-0129-0

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase

learn more about Springer eBooks

add to marked items


Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.


(net) price for USA

ISBN 978-3-0346-0128-3

free shipping for individuals worldwide

online orders shipping within 2-3 days.

add to marked items

From the reviews:

“The book under review considers the distribution of integral or rational points of bounded height on (projective) algebraic varieties. … well-written and well-organized. … Introductory material is discussed when appropriate, motivation and context are provided when necessary, and there are even small sets of exercises at the end of every chapter, making the book suitable for self or guided study … .” (Felipe Zaldivar, The Mathematical Association of America, January, 2010)

“The most important feature of the book is the way it presents the geometric and analytic aspects of the theory on a unified equal footing. The interface between these two fields has been a very productive subject in recent years, and this book is likely to be of considerable value to anyone, graduate student and up, interested in this area.” (Roger Heath-Brown, Zentralblatt MATH, Vol. 1188, 2010)

“The book … is focused on exposing how tools rooted in analytic number theory can be used to study quantitative problems in Diophantine geometry, by focusing on the Manin conjectures, the dimension growth conjecture, and the Hardy-Littlewood circle method. … book is clear, concise, and well written, and as such is highly recommended to a beginning graduate student looking for direction in pure mathematics or number theory. … includes a number of interesting and accessible exercises at the end of each of the eight chapters.”­­­ (Robert Juricevic, Mathematical Reviews, Issue 2010 i)



Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Number Theory.