Logo - springer
Slogan - springer

Birkhäuser - Birkhäuser Mathematics | Integral Methods in Science and Engineering - Progress in Numerical and Analytic Techniques

Integral Methods in Science and Engineering

Progress in Numerical and Analytic Techniques

Constanda, Christian, Bodmann, Bardo E.J., Velho, Haroldo F. de Campos (Eds.)

2013, XIX, 401 p. 148 illus., 53 illus. in color.

A product of Birkhäuser Basel
Available Formats:

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.


(net) price for USA

ISBN 978-1-4614-7828-7

digitally watermarked, no DRM

Included Format: PDF and EPUB

download immediately after purchase

learn more about Springer eBooks

add to marked items


Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.


(net) price for USA

ISBN 978-1-4614-7827-0

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days

add to marked items

  • ​​​​​​​​​​Illustrates the application of integral methods to diverse problems in mathematics, physics, biology, and engineering
  • Chapters written by a diverse group of well-established scientists 
  • Applicable to a broad range of special subjects, including deformable structures, fluid dynamics, medical imaging, and energy analysis
  • Useful for an interdisciplinary audience of graduate students, researchers, and professionals across mathematics and the sciences​

​​Advances in science and technology are driven by the development of rigorous mathematical foundations for the study of both theoretical and experimental models. With certain methodological variations, this type of study always comes down to the application of analytic or computational integration procedures, making such tools indispensible. With a wealth of cutting-edge research in the field, Integral Methods in Science and Engineering: Progress in Numerical and Analytic Techniques provides a detailed portrait of both the construction of theoretical integral techniques and their application to specific problems in science and engineering.


The chapters in this volume are based on talks given by well-known researchers at the Twelfth International Conference on Integral Methods in Science and Engineering, July 23–27, 2012, in Porto Alegre, Brazil. They address a broad range of topics, from problems of existence and uniqueness for singular integral equations on domain boundaries to numerical integration via finite and boundary elements, conservation laws, hybrid methods, and other quadrature-related approaches.  The contributing authors bring their expertise to bear on a number of topical problems that have to date resisted solution, thereby offering help and guidance to fellow professionals worldwide.


Integral Methods in Science and Engineering: Progress in Numerical and Analytic Techniques will be a valuable resource for researchers in applied mathematics, physics, and mechanical and electrical engineering, for graduate students in these disciplines, and for various other professionals who use integration as an essential tool in their work.​

Content Level » Research

Keywords » conservation laws - deformable structures - fluid dynamics - integral equations - integral methods - numerical methods

Related subjects » Birkhäuser Engineering - Birkhäuser Mathematics

Table of contents 

1 Multiphase Flow Splitting in Looped Pipelines.- 2 Green’s Function Decomposition Method for Transport Equation.- 3 Integral Neutron Transport and New Computational Methods: A Review.- 4 Scale Invariance and Some Limits in Transport Phenomenology: Existence of a Spontaneous Scale.- 5 On Coherent Structures from a Diffusion-Type Model.- 6 Numerical Simulation of the Dynamics of Molecular Markers Involved in Cell Polarization.- 7 Analytical Study of Computational Radiative Fluxes in a Heterogeneous Medium.- 8 A Novel Approach to the Hankel Transform Inversion of the Neutron Diffusion Problem Using the Parseval Identity.- 9 What Is Convergence Acceleration Anyway?.- 10 On the Fractal Pattern Phenomenology of Geological Fracture Signatures from a Scaling Law.- 11 Spectral Boundary Homogenization Problems in Perforated Domains with Robin Boundary Conditions and Large Parameters.- 12 A Finite Element Formulation of the Total Variation Method for Denoising a Set of Data.- 13 On the Convergence of the Multi-Group Isotropic Neutron LTSN Nodal Solution in Cartesian Geometry.- 14 Numerical Integration with Singularity by Taylor Series.- 15 Numerical Solutions of the 1D Convection–Diffusion–Reaction and the Burgers Equation Using Implicit Multi-Stage and Finite Element Methods.- 16 Analytical Reconstruction of Monoenergetic Neutron Angular Flux in Non-multiplying Slabs Using Diffusion Synthetic Approximation.- 17 On the Fractional Neutron Point Kinetics Equations.- 18 On a Closed Form Solution of the Point Kinetics Equations With a Modified Temperature Feedback.- 19 Eulerian Modeling of Radionuclides in Surficial Waters: The Case of Ilha Grande Bay (RJ, Brazil).- 20 Fractional Calculus: Application in Modeling and Control.- 21 Modified Integral Equation Method for Stationary Plate Oscillations.- 22 Nonstandard Integral Equations for the Harmonic Oscillations of Thin Plates.- 23 A Genuine Analytical Solution for the SN Multi-Group Neutron Equation in Planar Geometry.- 24 Single-Phase Flow Instabilities: Effect of Pressure Waves in a Pump–Pipe–Plenum–Choke System.- 25 Two-Phase Flow Instabilities in Oil Wells: ESP Oscillatory Behavior and Casing-Heading.- 26 Validating a Closed Form Advection–Diffusion Solution by Experiments: Tritium Dispersion after Emission from the Brazilian Angra Dos Reis Nuclear Power Plant.- Index.

Popular Content within this publication 



Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Integral Equations.