Logo - springer
Slogan - springer

Birkhäuser - Birkhäuser Mathematics | Measure Theory - Second Edition

Measure Theory

Second Edition

Cohn, Donald L.

2nd ed. 2013, XXI, 457 p. 7 illus.

A product of Birkhäuser Basel
Available Formats:

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.


(net) price for USA

ISBN 978-1-4614-6956-8

digitally watermarked, no DRM

Included Format: PDF and EPUB

download immediately after purchase

learn more about Springer eBooks

add to marked items


Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.


(net) price for USA

ISBN 978-1-4614-6955-1

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days

add to marked items

  • New edition provides additional topics such as the Kurzweil-Henstock integral, Banach-Tasrki paradox, a proof of the existence of liftings, the Daniell integral, and a brief introduction to measure-theoretic probability theory
  • Contains numerous examples and exercises
  • Provides a solid background for study in harmonic analysis and probability theory

Intended as a self-contained introduction to measure theory, this textbook also includes a comprehensive treatment of integration on locally compact Hausdorff spaces, the analytic and Borel subsets of Polish spaces, and Haar measures on locally compact groups. This second edition includes a chapter on measure-theoretic probability theory, plus brief treatments of the Banach-Tarski paradox, the Henstock-Kurzweil integral, the Daniell integral, and the existence of liftings.

Measure Theory provides a solid background for study in both functional analysis and probability theory and is an excellent resource for advanced undergraduate and graduate students in mathematics. The prerequisites for this book are basic courses in point-set topology and in analysis, and the appendices present a thorough review of essential background material.


The author aims to present  a straightforward treatment of the part of measure theory necessary for analysis and probability' assuming only basic knowledge of analysis and topology...Each chapter includes numerous well-chosen exercises, varying from very routine practice problems to important extensions and developments of the theory; for the difficult ones there are helpful hints. It is the reviewer's opinion that the author has succeeded in his aim. In spite of its lack of new results, the selection and presentation of materials makes this a useful book for an introduction to measure and integration theory.

—Mathematical Reviews (Review of the First Edition)


The book is a comprehensive and clearly written textbook on measure and integration...The book contains appendices on set theory, algebra, calculus and topology in Euclidean spaces, topological and metric spaces, and the Bochner integral. Each section of the book contains a number of exercises.  

—zbMATH (Review of the First Edition)

Content Level » Graduate

Keywords » Banach-Tarski paradox - Borel subsets - Daniell integral - Kurzweil-Henstock integral - measure-theoretic probability theory

Related subjects » Birkhäuser Applied Probability and Statistics - Birkhäuser Mathematics

Table of contents 

1. Measures.- Algebras and sigma-algebras.- Measures.- Outer measures.- Lebesgue measure.- Completeness and regularity.- Dynkin classes.- 2. Functions and Integrals.- Measurable functions.- Properties that hold almost everywhere.- The integral.- Limit theorems.- The Riemann integral.- Measurable functions again, complex-valued functions, and image measures.- 3. Convergence.- Modes of Convergence.- Normed spaces.- Definition of L^p and L^p.- Properties of L^p and L-p.- Dual spaces.- 4. Signed and Complex Measures.- Signed and complex measures.- Absolute continuity.- Singularity.- Functions of bounded variation.- The duals of the L^p spaces.- 5. Product Measures.- Constructions.- Fubini’s theorem.- Applications.- 6. Differentiation.- Change of variable in R^d.- Differentiation of measures.- Differentiation of functions.- 7. Measures on Locally Compact Spaces.- Locally compact spaces.- The Riesz representation theorem.- Signed and complex measures; duality.- Additional properties of regular measures.- The µ^*-measurable sets and the dual of L^1.- Products of locally compact spaces.- 8. Polish Spaces and Analytic Sets.- Polish spaces.- Analytic sets.- The separation theorem and its consequences.- The measurability of analytic sets.- Cross sections.- Standard, analytic, Lusin, and Souslin spaces.- 9. Haar Measure.- Topological groups.- The existence and uniqueness of Haar measure.- The algebras L^1 (G) and M (G).- Appendices.- A. Notation and set theory.- B. Algebra.- C. Calculus and topology in R^d.- D. Topological spaces and metric spaces.- E. The Bochner integral.- F Liftings.- G The Banach-Tarski paradox.- H The Henstock-Kurzweil and McShane integralsBibliography.- Index of notation.- Index.

Popular Content within this publication 



Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Measure and Integration.