Logo - springer
Slogan - springer

Birkhäuser - Birkhäuser Mathematics | An Introduction to Riemann Surfaces

An Introduction to Riemann Surfaces

Series: Cornerstones

Napier, Terrence, Ramachandran, Mohan

2012, XVII, 560p. 42 illus..

A product of Birkhäuser Basel
Available Formats:

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.


(net) price for USA

ISBN 978-0-8176-4693-6

digitally watermarked, no DRM

Included Format: PDF and EPUB

download immediately after purchase

learn more about Springer eBooks

add to marked items


Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.


(net) price for USA

ISBN 978-0-8176-4692-9

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days

add to marked items

  • Presents a unified and competitive approach to compact and noncompact Riemann surfaces
  • Includes continuing exercises that run throughout the book and lead to generalizations of the main theorems
  • Will help expand and reinforce a student’s knowledge of analysis, geometry, and topology

This textbook presents a unified approach to compact and noncompact Riemann surfaces from the point of view of the L² -method, a powerful technique used in the theory of several complex variables.  The work features a simple construction of a strictly subharmonic exhaustion function and a related construction of a positive-curvature Hermitian metric in a holomorphic line bundle, topics which serve as starting points for proofs of standard results such as the Mittag-Leffler, Weierstrass, and Runge theorems; the Riemann−Roch theorem; the Serre duality and Hodge decomposition theorems; and the uniformization theorem. The book also contains treatments of other facts concerning the holomorphic, smooth, and topological structure of a Riemann surface, such as the biholomorphic classification of Riemann surfaces, the embedding theorems, the integrability of almost complex structures, the Schönflies theorem (and the Jordan curve theorem), and the existence of smooth structures on second countable surfaces. 

Although some previous experience with complex analysis, Hilbert space theory, and analysis on manifolds would be helpful, the only prerequisite for this book is a working knowledge of point-set topology and elementary measure theory. The work includes numerous exercises—many of which lead to further development of the theory—and  presents (with proofs) streamlined treatments of background topics from analysis and topology on manifolds in easily-accessible reference chapters, making it ideal for a one- or two-semester graduate course.

Content Level » Graduate

Keywords » DeRham-Hodge decomposition - Morse theory - complex manifolds

Related subjects » Birkhäuser Mathematics

Table of contents / Preface / Sample pages 

Popular Content within this publication 



Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Several Complex Variables and Analytic Spaces.