Logo - springer
Slogan - springer

Birkhäuser - Birkhäuser Mathematics | Introduction to Plane Algebraic Curves

Introduction to Plane Algebraic Curves

Kunz, Ernst

Translated by Belshoff, R.G.

Based on the original German edition, "Ebene algebraische Kurven", Der Regensburg Trichter, 23, Universität Regensburg, ISBN 3-88246-167-5, © 1991 Ernst Kunz; English translation by Richard G. Belshoff.

2005, XII, 293 p. 52 illus.

A product of Birkhäuser Basel
Available Formats:

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.


(net) price for USA

ISBN 978-0-8176-4443-7

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase

learn more about Springer eBooks

add to marked items


Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.


(net) price for USA

ISBN 978-0-8176-4381-2

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days

add to marked items

This work treats an introduction to commutative ring theory and algebraic plane curves, requiring of the student only a basic knowledge of algebra, with all of the algebraic facts collected into several appendices that can be easily referred to, as needed.

Kunz's proven conception of teaching topics in commutative algebra together with their applications to algebraic geometry makes this book significantly different from others on plane algebraic curves. The exposition focuses on the purely algebraic aspects of plane curve theory, leaving the topological and analytical viewpoints in the background, with only casual references to these subjects and suggestions for further reading.

Most important to this text:

* Emphasizes and utilizes the theory of filtered algebras, their graduated rings and Rees algebras, to deduce basic facts about the intersection theory of plane curves

* Presents residue theory in the affine plane and its applications to intersection theory

* Methods of proof for the Riemann–Roch theorem conform to the presentation of curve theory, formulated in the language of filtrations and associated graded rings

* Examples, exercises, figures and suggestions for further study round out this fairly self-contained textbook

From a review of the German edition:

"[T]he reader is invited to learn some topics from commutative ring theory by mainly studying their illustrations and applications in plane curve theory. This methodical approach is certainly very enlightening and efficient for both teachers and students… The whole text is a real masterpiece of clarity, rigor, comprehension, methodical skill, algebraic and geometric motivation…highly enlightening, motivating and entertaining at the same time… One simply cannot do better in writing such a textbook."

—Zentralblatt MATH



Content Level » Graduate

Keywords » Algebraic curve - Belshoff - Kunz - algebra - computer algebra - ksa - ring theory

Related subjects » Birkhäuser Mathematics

Table of contents 

* Preface * Conventions and Notation * Part I: Plane Algebraic Curves * Affine Algebraic Curves * Projective Algebraic Curves * The Coordinate Ring of an Algebraic Curve and the Intersections of Two Curves * Rational Functions on Algebraic Curves * Intersection Multiplicity and Intersection Cycle of Two Curves * Regular and Singular Points of Algebraic Curves. Tangents * More on Intersection Theory. Applications * Rational Maps. Parametric Representations of Curves * Polars and Hessians of Algebraic Curves * Elliptic Curves * Residue Calculus * Applications of Residue Theory to Curves * The Riemann–Roch Theorem * The Genus of an Algebraic Curve and of its Function Field * The Canonical Divisor Class * The Branches of a Curve Singularity * Conductor and Value Semigroup of a Curve Singularity * Part II: Algebraic Foundations * Algebraic Foundations * Graded Algebras and Modules * Filtered Algebras * Rings of Quotients. Localization * The Chinese Remainder Theorem * Noetherian Local Rings and Discrete Valuation Rings * Integral Ring Extensions * Tensor Products of Algebras * Traces * Ideal Quotients * Complete Rings. Completion * Tools for a Proof of the Riemann–Roch Theorem * References * Index * List of Symbols

Popular Content within this publication 



Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Algebraic Geometry.