Logo - springer
Slogan - springer

Birkhäuser - Birkhäuser Mathematics | Real Analysis

Real Analysis

DiBenedetto, Emmanuele

2002, XXIV, 485 p.

A product of Birkhäuser Basel
Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$79.99

(net) price for USA

ISBN 978-1-4612-0117-5

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$109.00

(net) price for USA

ISBN 978-0-8176-4231-0

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$109.00

(net) price for USA

ISBN 978-1-4612-6620-4

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

The focus of this modern graduate text in real analysis is to prepare the potential researcher to a rigorous "way of thinking" in applied mathematics and partial differential equations. The book will provide excellent foundations and serve as a solid building block for research in analysis, PDEs, the calculus of variations, probability, and approximation theory. All the core topics of the subject are covered, from a basic introduction to functional analysis, to measure theory, integration and weak differentiation of functions, and in a presentation that is hands-on, with little or no unnecessary abstractions.

Additional features:

* Carefully chosen topics, some not touched upon elsewhere: fine properties of integrable functions as they arise in applied mathematics and PDEs – Radon measures, the Lebesgue Theorem for general Radon measures, the Besicovitch covering Theorem, the Rademacher Theorem; topics in Marcinkiewicz integrals, functions of bounded variation, Legendre transform and the characterization of compact subset of some metric function spaces and in particular of Lp spaces

* Constructive presentation of the Stone-Weierstrass Theorem

* More specialized chapters (8-10) cover topics often absent from classical introductiory texts in analysis: maximal functions and weak Lp spaces, the Calderón-Zygmund decomposition, functions of bounded mean oscillation, the Stein-Fefferman Theorem, the Marcinkiewicz Interpolation Theorem, potential theory, rearrangements, estimations of Riesz potentials including limiting cases

* Provides a self-sufficient introduction to Sobolev Spaces, Morrey Spaces and Poincaré inequalities as the backbone of PDEs and as an essential environment to develop modern and current analysis

* Comprehensive index

This clear, user-friendly exposition of real analysis covers a great deal of territory in a concise fashion, with sufficient motivation and examples throughout. A number of excellent problems, as well as some remarkable features of the exercises, occur at the end of every chapter, which point to additional theorems and results. Stimulating open problems are proposed to engage students in the classroom or in a self-study setting.

Content Level » Graduate

Keywords » Maxima - Maximum - analysis/pdes - applications of mathematics - bounded mean oscillation - calculus - differential equation - functional analysis - linear optimization - measure - measure theory

Related subjects » Birkhäuser Mathematics

Table of contents 

Preface * Preliminaries * Topologies and Metric Spaces * Measuring Sets * The Lebesgue Integral * Topics on Measurable Functions of Real Variables * The L^p Spaces * Banach Spaces * Spaces of Continuous Functions, Distributions, and Weak Derivitives * Topics on Integrable Functions of Real Variables * Embedding of W ^1,p (E) into L^q (E) * References * Index

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Applications of Mathematics.