Logo - springer
Slogan - springer

Birkhäuser - Birkhäuser Mathematics | The Geometry of Complex Domains

The Geometry of Complex Domains

Series: Progress in Mathematics, Vol. 291

Greene, Robert E., Kim, Kang-Tae, Krantz, Steven G.

2011, XIV, 303p. 14 illus..

A product of Birkhäuser Basel
Available Formats:

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.


(net) price for USA

ISBN 978-0-8176-4622-6

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase

learn more about Springer eBooks

add to marked items


Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.


(net) price for USA

ISBN 978-0-8176-4139-9

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days

add to marked items

  • Unique, authoritative text on a dynamic and active subject area written by three founders of the field
  • Comprehensive treatment of the topic, with abundant examples and references
  • Both accessible to beginners and meaningful for experienced researchers in the field
  • Useful as a textbook in graduate courses on complex analysis

The geometry of complex domains is a subject with roots extending back more than a century, to the uniformization theorem of Poincaré and Koebe and the resulting proof of existence of canonical metrics for hyperbolic Riemann surfaces. In modern times, developments in several complex variables by Bergman, Hörmander, Andreotti-Vesentini, Kohn, Fefferman, and others have opened up new possibilities for the unification of complex function theory and complex geometry. In particular, geometry can be used to study biholomorphic mappings in remarkable ways. This book presents a complete picture of these developments.

Beginning with the one-variable case—background information which cannot be found elsewhere in one place—the book presents a complete picture of the symmetries of domains from the point of view of holomorphic mappings. It describes all the relevant techniques, from differential geometry to Lie groups to partial differential equations to harmonic analysis. Specific concepts addressed include:

  • covering spaces and uniformization;
  • Bergman geometry;
  • automorphism groups;
  • invariant metrics;
  • the scaling method.

All modern results are accompanied by detailed proofs, and many illustrative examples and figures appear throughout.

Written by three leading experts in the field, The Geometry of Complex Domains is the first book to provide systematic treatment of recent developments in the subject of the geometry of complex domains and automorphism groups of domains. A unique and definitive work in this subject area, it will be a valuable resource for graduate students and a useful reference for researchers in the field.

Content Level » Graduate

Keywords » Cauchy-Riemann equations - Greene-Krantz conjecture - automorphism - complex geometry - complex invariants - curvature - equivalent embeddings - isometry - semicontinuity

Related subjects » Birkhäuser Mathematics

Table of contents / Preface / Sample pages 

Popular Content within this publication 



Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Several Complex Variables and Analytic Spaces.