Logo - springer
Slogan - springer

Birkhäuser - Birkhäuser Mathematics | Multiscale Potential Theory - With Applications to Geoscience

Multiscale Potential Theory

With Applications to Geoscience

Freeden, Willi, Michel, Volker

2004, XVI, 509 p., 127 illus.

A product of Birkhäuser Basel
Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$69.95

(net) price for USA

ISBN 978-1-4612-2048-0

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$89.95

(net) price for USA

ISBN 978-0-8176-4105-4

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$89.95

(net) price for USA

ISBN 978-1-4612-7395-0

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

This self-contained book provides a basic foundation for students, practitioners, and researchers interested in some of the diverse new areas of multiscale (geo)potential theory. New mathematical methods are developed enabling the gravitational potential of a planetary body to be modeled and analyzed using a continuous flow of observations from land or satellite devices. Harmonic wavelet methods are introduced, as well as fast computational schemes and various numerical test examples.

The work is divided into two main parts: Part I treats well-posed boundary-value problems of potential theory and elasticity; Part II examines ill-posed problems such as satellite-to-satellite tracking, satellite gravity gradiometry, and gravimetry. Both sections demonstrate how multiresolution representations yield Runge–Walsh type solutions that are both accurate in approximation and tractable in computation.

Topic and key features:

* Comprehensive coverage of topics which, thus far, are only scattered in journal articles and conference proceedings

* Important applications and developments for future satellite scenarios; new modelling techniques involving low-orbiting satellites

* Multiscale approaches for numerous geoscientific problems, including geoidal determination, magnetic field reconstruction, deformation analysis, and density variation modelling

* Multilevel stabilization procedures for regularization

* Treatment of the real Earth’s shape as well as a spherical Earth model

* Modern methods of constructive approximation

* Exercises at the end of each chapter and an appendix with hints to their solutions

Models and methods presented show how various large- and small-scale processes may be addressed by a single geoscientific modelling framework for potential determination. Multiscale Potential Theory may be used as a textbook for graduate-level courses in geomathematics, applied mathematics, and geophysics. The book is also an up-to-date reference text for geoscientists, applied mathematicians, and engineers.

Content Level » Research

Keywords » Potential - Potential theory - Wavelet - approximations - geomathematics - geophysics - mathematical geophysics - model - modeling - multiresolution analysis - multiscale methods

Related subjects » Birkhäuser Engineering - Birkhäuser Geoscience - Birkhäuser Mathematics - Birkhäuser Physics

Table of contents 

Preface Introduction Preliminary Tools Part I: Well-Posed Problems Boundary-Value Problems of Potential Theory Boundary-Value Problems of Elasticity Part II: Ill-Posed Problems Satellite Problems The Gravimetry Problem Conclusion Hints for the Solutions of the Exercises References Index

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Potential Theory.

Additional information