Logo - springer
Slogan - springer

Birkhäuser - Birkhäuser History of Science | Excursions in the History of Mathematics

Excursions in the History of Mathematics

Kleiner, Israel

2012, XXI, 347p. 36 illus..

A product of Birkhäuser Basel
Available Formats:

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.


(net) price for USA

ISBN 978-0-8176-8268-2

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase

learn more about Springer eBooks

add to marked items


Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.


(net) price for USA

ISBN 978-0-8176-8267-5

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days

add to marked items

This book comprises five parts. The first three contain ten historical essays on important topics: number theory, calculus/analysis, and proof, respectively.  Part four deals with several historically oriented courses, and Part five provides biographies of five mathematicians who played major roles in the historical events described in the first four parts of the work. 

Each of the first three parts—on number theory, calculus/analysis, and proof—begins with a survey of the respective subject and is followed in more depth by specialized themes. Among the specialized themes are:  Fermat as the founder of modern number theory, Fermat’s Last Theorem from Fermat to Wiles, the history of the function concept, paradoxes, the principle of continuity, and an historical perspective on recent debates about proof. 

The fourth part contains essays describing mathematics courses inspired by history. The essays deal with numbers as a source of ideas in teaching, with famous problems, and with the stories behind various "great" quotations. The last part gives an account of five mathematicians—Dedekind, Euler, Gauss, Hilbert, and Weierstrass—whose lives and work we hope readers will find inspiring.

Key features of the work include:

* A preface describing in some detail the author's ideas on teaching mathematics courses, in particular, the role of history in such courses;

* Explicit comments and suggestions for teachers on how history can affect the teaching of mathematics;

* A description of a course in the history of mathematics taught in an In-Service Master's Program for high school teachers;

* Inclusion of issues in the philosophy of mathematics;

* An extensive list of relevant references at the end of each chapter.

Excursions in the History of Mathematics was written with several goals in mind: to arouse mathematics teachers’ interest in the history of their subject; to encourage mathematics teachers with at least some knowledge of the history of mathematics to offer courses with a strong historical component; and to provide an historical perspective on a number of basic topics taught in mathematics courses.

Content Level » Upper undergraduate

Keywords » Dedekind - Euler - Fermat's Last Theorem - Gauss - Hilbert - Weierstrass - analysis - history of mathematics - history of the function concept - mathematical proof - mathematics education - number theory - paradoxes - philosophy of mathematics - principle of continuity - teaching mathematics

Related subjects » Birkhäuser History of Science - Birkhäuser Mathematics

Table of contents / Preface / Sample pages 

Popular Content within this publication 



Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of History of Mathematics.

Additional information