Logo - springer
Slogan - springer

Birkhäuser - Birkhäuser Engineering | Introductory Statistics and Random Phenomena

Introductory Statistics and Random Phenomena

Uncertainty, Complexity and Chaotic Behavior in Engineering and Science

Denker, Manfred, Woyczynski, Wojbor

1998, XXIV, 509 p.

A product of Birkhäuser Basel
Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$69.95

(net) price for USA

ISBN 978-1-4612-2028-2

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$89.95

(net) price for USA

ISBN 978-0-8176-4031-6

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$89.95

(net) price for USA

ISBN 978-1-4612-7388-2

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

The present book is based on a course developed as partofthe large NSF-funded GatewayCoalitionInitiativeinEngineeringEducationwhichincludedCaseWest­ ern Reserve University, Columbia University, Cooper Union, Drexel University, Florida International University, New Jersey Institute ofTechnology, Ohio State University, University ofPennsylvania, Polytechnic University, and Universityof South Carolina. The Coalition aimed to restructure the engineering curriculum by incorporating the latest technological innovations and tried to attract more and betterstudents to engineering and science. Draftsofthis textbookhave been used since 1992instatisticscoursestaughtatCWRU, IndianaUniversity, Bloomington, and at the universities in Gottingen, Germany, and Grenoble, France. Another purpose of this project was to develop a courseware that would take advantage ofthe Electronic Learning Environment created by CWRUnet-the all fiber-optic Case Western Reserve University computer network, and its ability to let students run Mathematica experiments and projects in their dormitory rooms, and interactpaperlessly with the instructor. Theoretically,onecould try togothroughthisbook withoutdoing Mathematica experimentsonthecomputer,butitwouldbelikeplayingChopin's Piano Concerto in E-minor, or Pink Floyd's The Wall, on an accordion. One would get an idea ofwhatthe tune was without everexperiencing the full richness andpowerofthe entire composition, and the whole ambience would be miscued.

Content Level » Research

Keywords » Descriptive statistics - Fuzzy - Probability theory - Regression analysis - Signal - complexity - construction - dynamische Systeme - mechanics - modeling - point process - probability - quantum mechanics - statistical analysis - statistics

Related subjects » Birkhäuser Applied Probability and Statistics - Birkhäuser Engineering - Birkhäuser Mathematics

Table of contents 

I Descriptive Statistics-Compressing Data.- 1 Why One Needs to Analyze Data.- 1.1 Coin tossing, lottery, and the stock market.- 1.2 Inventory problems in management.- 1.3 Battery life and quality control in manufacturing.- 1.4 Reliability of complex systems.- 1.5 Point processes in time and space.- 1.6 Polls-social sciences.- 1.7 Time series.- 1.8 Repeated experiments and testing.- 1.9 Simple chaotic dynamical systems.- 1.10 Complex dynamical systems.- 1.11 Pseudorandom number generators and the Monte-Carlo methods.- 1.12 Fractals and image reconstruction.- 1.13 Coding and decoding, unbreakable ciphers.- 1.14 Experiments, exercises, and projects.- 1.15 Bibliographical notes.- 2 Data Representation and Compression.- 2.1 Data types, categorical data.- 2.2 Numerical data: order statistics, median, quantiles.- 2.3 Numerical data: histograms, means, moments.- 2.4 Location, dispersion, and shape parameters.- 2.5 Probabilities: a frequentist viewpoint.- 2.6 Multidimensional data: histograms and other graphical representations.- 2.7 2-D data: regression and correlations.- 2.8 Fractal data.- 2.9 Measuring information content:entropy.- 2.10 Experiments, exercises, and projects.- 2.11 Bibliographical notes.- 3 Analytic Representation of Random Experimental Data.- 3.1 Repeated experiments and the law of large numbers.- 3.2 Characteristics of experiments: distribution functions, densities, means, variances.- 3.3 Uniform distributions, simulation of random quantities, the Monte Carlo method.- 3.4 Bernoulli and binomial distributions.- 3.5 Rescaling probabilities: Poisson approximation.- 3.6 Stability of Fluctuations Law: Gaussian approximation.- 3.7 How to estimate p in Bernoulli experiments.- 3.8 Other continuous distributions; Gamma function calculus.- 3.9 Testing the fit of a distribution.- 3.10 Random vectors and multivariate distributions.- 3.11 Experiments, exercises, and projects.- 3.12 Bibliographical notes.- II Modeling Uncertainty.- 4 Algorithmic Complexity and Random Strings.- 4.1 Heart of randomness: when is random — random?.- 4.2 Computable strings and the Turing machine.- 4.3 Kolmogorov complexity and random strings.- 4.4 Typical sequences: Martin-Löf tests of randomness.- 4.5 Stability of subsequences: von Mises randomness.- 4.6 Computable framework of randomness: degrees of irregularity.- 4.7 Experiments, exercises, and projects.- 4.8 Bibliographical notes.- 5 Statistical Independence and Kolmogorov’s Probability Theory.- 5.1 Description of experiments, random variables, and Kolmogorov’s axioms.- 5.2 Uniform discrete distributions and counting.- 5.3 Statistical independence as a model for repeated experiments..- 5.4 Expectations and other characteristics of random variables.- 5.4.1 Expectations.- 5.4.2 Expectations of functions of random variables. Variance.- 5.4.3 Expectations of functions of vectors. Covariance.- 5.4.4 Expectation of the product. Variance of the sum of independent random variables.- 5.4.5 Moments and the moment generating function.- 5.4.6 Expectations of general random variables.- 5.5 Averages of independent random variables.- 5.6 Laws of large numbers and small deviations.- 5.7 Central limit theorem and large deviations.- 5.8 Experiments, exercises, and projects.- 5.9 Bibliographical Notes.- 6 Chaos in Dynamical Systems: How Uncertainty Arises in Scientific and Engineering Phenomena.- 6.1 Dynamical systems: general concepts and typical examples.- 6.2 Orbits and fixed points.- 6.3 Stability of frequencies and the ergodic theorem.- 6.4 Stability of fluctuations and the central limit theorem.- 6.5 Attractors, fractals, and entropy.- 6.6 Experiments, exercises, and projects.- 6.7 Bibliographical notes.- III Model Specification-Design of Experiments.- 7 General Principles of Statistical Analysis.- 7.1 Design of experiments and planning of investigation.- 7.2 Model selection.- 7.3 Determining the method of statistical inference.- 7.3.1 Maximum likelihood estimator (MLE).- 7.3.2 Least squares estimator (LSE).- 7.3.3 Method of moments (MM).- 7.3.4 Concluding remarks.- 7.4 Estimation of fractal dimension.- 7.5 Practical side of data collection and analysis.- 7.6 Experiments, exercises, and projects.- 7.7 Bibliographical notes.- 8 Statistical Inference for Normal Populations.- 8.1 Introduction; parametric inference.- 8.2 Confidence intervals for one-sample model.- 8.3 From confidence intervals to hypothesis testing.- 8.4 Statistical inference for two—sample normal models.- 8.5 Regression analysis for the normal model.- 8.6 Testing for goodness-of-fit.- 8.7 Experiments, exercises, and projects.- 8.8 Bibliographical notes.- 9 Analysis of Variance.- 9.1 Single-factor ANOVA.- 9.2 Two-factor ANOVA.- 9.3 Experiments, exercises, and projects.- 9.4 Bibliographical notes.- A Uncertainty Principle in Signal Processing and Quantum Mechanics.- B Fuzzy Systems and Logic.- C A Critique of Pure Reason.- D The Remarkable Bernoulli Family.- F Tables.

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Appl. Mathematics / Computational Methods of Engineering.