Skip to main content
Birkhäuser
Book cover

Solving Higher-Order Equations

From Logic to Programming

  • Book
  • © 1998

Overview

Part of the book series: Progress in Theoretical Computer Science (PTCS)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (9 chapters)

Keywords

About this book

This monograph develops techniques for equational reasoning in higher-order logic. Due to its expressiveness, higher-order logic is used for specification and verification of hardware, software, and mathematics. In these applica­ tions, higher-order logic provides the necessary level of abstraction for con­ cise and natural formulations. The main assets of higher-order logic are quan­ tification over functions or predicates and its abstraction mechanism. These allow one to represent quantification in formulas and other variable-binding constructs. In this book, we focus on equational logic as a fundamental and natural concept in computer science and mathematics. We present calculi for equa­ tional reasoning modulo higher-order equations presented as rewrite rules. This is followed by a systematic development from general equational rea­ soning towards effective calculi for declarative programming in higher-order logic and A-calculus. This aims at integrating and generalizing declarative programming models such as functional and logic programming. In these two prominent declarative computation models we can view a program as a logical theory and a computation as a deduction.

Authors and Affiliations

  • Institut für Informatik, SB3, München, Germany

    Christian Prehofer

Bibliographic Information

Publish with us