Skip to main content
  • Book
  • © 1993

Schrödinger Equations and Diffusion Theory

Birkhäuser

Authors:

  • Self-contained and well-organized introduction to the theory of diffusion processes and applications
  • Recommended to researchers and graduate students in probability theory, functional analysis and quantum dynamics
  • Excellent addition to the literature in probability theory?
  • Includes supplementary material: sn.pub/extras

Part of the book series: Modern Birkhäuser Classics (MBC)

Buy it now

Buying options

eBook USD 64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

This is a preview of subscription content, log in via an institution to check for access.

Table of contents (12 chapters)

  1. Front Matter

    Pages i-xii
  2. Introduction and Motivation

    • Masao Nagasawa
    Pages 1-12
  3. Variational Principle

    • Masao Nagasawa
    Pages 115-138
  4. Diffusion Processes in q-Representation

    • Masao Nagasawa
    Pages 139-162
  5. Segregation of a Population

    • Masao Nagasawa
    Pages 163-206
  6. Relative Entropy and Csiszar’s Projection

    • Masao Nagasawa
    Pages 239-252
  7. Large Deviations

    • Masao Nagasawa
    Pages 253-260
  8. Back Matter

    Pages 281-319

About this book

Schrödinger Equations and Diffusion Theory addresses the question “What is the Schrödinger equation?” in terms of diffusion processes, and shows that the Schrödinger equation and diffusion equations in duality are equivalent. In turn, Schrödinger’s conjecture of 1931 is solved. The theory of diffusion processes for the Schrödinger equation tells us that we must go further into the theory of systems of (infinitely) many interacting quantum (diffusion) particles.

The method of relative entropy and the theory of transformations enable us to construct severely singular diffusion processes which appear to be equivalent to Schrödinger equations.

The theory of large deviations and the propagation of chaos of interacting diffusion particles reveal the statistical mechanical nature of the Schrödinger equation, namely, quantum mechanics.

The text is practically self-contained and requires only an elementary knowledge of probability theory at the graduate level.

---

This book is a self-contained, very well-organized monograph recommended to researchers and graduate students in the field of probability theory, functional analysis and quantum dynamics. (...) what is written in this book may be regarded as an introduction to the theory of diffusion processes and applications written with the physicists in mind. Interesting topics present themselves as the chapters proceed. (...) this book is an excellent addition to the literature of mathematical sciences with a flavour different from an ordinary textbook in probability theory because of the author’s great contributions in this direction. Readers will certainly enjoy the topics and appreciate the  profound mathematical properties of diffusion processes.
(Mathematical Reviews)​

Authors and Affiliations

  • , Department of Mathematics, University of Zurich, Zurich, Switzerland

    Masao Nagasawa

About the author

Masao Nagasawa is professor of mathematics at the University of Zurich, Switzerland.

Bibliographic Information

Buy it now

Buying options

eBook USD 64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access