Logo - springer
Slogan - springer

Birkhäuser - Birkhäuser Applied Probability and Statistics | Schrödinger Equations and Diffusion Theory

Schrödinger Equations and Diffusion Theory

Nagasawa, Masao

Originally published as volume 86 in the Monographs in Mathematics series

1993, XII, 319 p.

A product of Birkhäuser Basel
Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$39.95

(net) price for USA

ISBN 978-3-0348-0560-5

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$59.95

(net) price for USA

ISBN 978-3-0348-0559-9

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • Self-contained and well-organized introduction to the theory of diffusion processes and applications
  • Recommended to researchers and graduate students in probability theory, functional analysis and quantum dynamics
  • Excellent addition to the literature in probability theory​

Schrödinger Equations and Diffusion Theory addresses the question “What is the Schrödinger equation?” in terms of diffusion processes, and shows that the Schrödinger equation and diffusion equations in duality are equivalent. In turn, Schrödinger’s conjecture of 1931 is solved. The theory of diffusion processes for the Schrödinger equation tells us that we must go further into the theory of systems of (infinitely) many interacting quantum (diffusion) particles.

The method of relative entropy and the theory of transformations enable us to construct severely singular diffusion processes which appear to be equivalent to Schrödinger equations.

The theory of large deviations and the propagation of chaos of interacting diffusion particles reveal the statistical mechanical nature of the Schrödinger equation, namely, quantum mechanics.

The text is practically self-contained and requires only an elementary knowledge of probability theory at the graduate level.

---

This book is a self-contained, very well-organized monograph recommended to researchers and graduate students in the field of probability theory, functional analysis and quantum dynamics. (...) what is written in this book may be regarded as an introduction to the theory of diffusion processes and applications written with the physicists in mind. Interesting topics present themselves as the chapters proceed. (...) this book is an excellent addition to the literature of mathematical sciences with a flavour different from an ordinary textbook in probability theory because of the author’s great contributions in this direction. Readers will certainly enjoy the topics and appreciate the  profound mathematical properties of diffusion processes.
(Mathematical Reviews)

Content Level » Research

Keywords » Boltzmann equation - branching property - propagation of chaos - q-Representation - relative entropy - statistical mechanics

Related subjects » Birkhäuser Applied Probability and Statistics - Birkhäuser Mathematics

Table of contents / Preface / Sample pages 

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Probability Theory and Stochastic Processes.