Logo - springer
Slogan - springer

Birkhäuser - Birkhäuser Applied Probability and Statistics | The Self-Avoiding Walk

The Self-Avoiding Walk

Madras, Neal, Slade, Gordon

2013, XVI, 427 p.

A product of Birkhäuser Basel
Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$59.95

(net) price for USA

ISBN 978-1-4614-6025-1

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$79.95

(net) price for USA

ISBN 978-1-4614-6024-4

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • ​Affordable reprint of a classic monograph
  • Provides a focused look at an important mathematical model
  • Includes an introduction to methods used in physics and chemistry

The self-avoiding walk is a mathematical model that has important applications in statistical mechanics and polymer science. In spite of its simple definition—a path on a lattice that does not visit the same site more than once—it is difficult to analyze mathematically. The Self-Avoiding Walk provides the first unified account of the known rigorous results for the self-avoiding walk, with particular emphasis on its critical behavior. Its goals are to give an account of the current mathematical understanding of the model, to indicate some of the applications of the concept in physics and in chemistry, and to give an introduction to some of the nonrigorous methods used in those fields. 

 

Topics covered in the book include: the lace expansion and its application to the self-avoiding walk in more than four dimensions where most issues are now resolved; an introduction to the nonrigorous scaling theory; classical work of Hammersley and others; a new exposition of Kesten’s pattern theorem and its consequences; a discussion of the decay of the two-point function and its relation to probabilistic renewal theory; analysis of Monte Carlo methods that have been used to study the self-avoiding walk; the role of the self-avoiding walk in physical and chemical applications. Methods from combinatorics, probability theory, analysis, and mathematical physics play important roles. The book is highly accessible to both professionals and graduate students in mathematics, physics, and chemistry.​ 

Content Level » Graduate

Keywords » Kesten's pattern theorem - lace expansion - polymer science - self-avoiding walk - statistical mechanics - two-point function

Related subjects » Birkhäuser Applied Probability and Statistics

Table of contents 

​​Preface.- ​Introduction.- Scaling, polymers and spins.- Some combinatorial bounds.- Decay of the two-point function.- The lace expansion.- Above four dimensions.- Pattern theorems.- Polygons, slabs, bridges and knots.- Analysis of Monte Carlo methods.- Related Topics.- Random walk.- Proof of the renewal theorem.- Tables of exact enumerations.- Bibliography.- Notation.- Index. 

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Probability Theory and Stochastic Processes.