Logo - springer
Slogan - springer

Biomedical Sciences - Neuroscience | Self-Organization and Associative Memory

Self-Organization and Associative Memory

Kohonen, Teuvo

3rd ed., XV, 312 pp. 100 figs.

Available Formats:

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.


(net) price for USA

ISBN 978-3-642-88163-3

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase

learn more about Springer eBooks

add to marked items


Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.


(net) price for USA

ISBN 978-3-540-51387-2

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days

add to marked items

While the present edition is bibliographically the third one of Vol. 8 of the Springer Series in Information Sciences (IS 8), the book actually stems from Vol. 17 of the series Communication and Cybernetics (CC 17), entitled Associative Memory - A System-Theoretical Approach, which appeared in 1977. That book was the first monograph on distributed associative memories, or "content-addressable memories" as they are frequently called, especially in neural-networks research. This author, however, would like to reserve the term "content-addressable memory" for certain more traditional constructs, the memory locations of which are selected by parallel search. Such devices are discussed in Vol. 1 of the Springer Series in Information Sciences, Content-Addressable Memories. This third edition of IS 8 is rather similar to the second one. Two new discussions have been added: one to the end of Chap. 5, and the other (the L VQ 2 algorithm) to the end of Chap. 7. Moreover, the convergence proof in Sect. 5.7.2 has been revised.

Content Level » Research

Keywords » adaptation - algorithm - algorithms - associative memory - biology - biophysics - communication - computer - cybernetics - information processing - information science - learning - mathematical psychology - memory - simulation

Related subjects » Artificial Intelligence - Biophysics & Biological Physics - Computational Intelligence and Complexity - Hardware - Neuroscience - Software Engineering

Table of contents 

1. Various Aspects of Memory.- 1.1 On the Purpose and Nature of Biological Memory.- 1.1.1 Some Fundamental Concepts.- 1.1.2 The Classical Laws of Association.- 1.1.3 On Different Levels of Modelling.- 1.2 Questions Concerning the Fundamental Mechanisms of Memory.- 1.2.1 Where Do the Signals Relating to Memory Act Upon?.- 1.2.2 What Kind of Encoding is Used for Neural Signals?.- 1.2.3 What are the Variable Memory Elements?.- 1.2.4 How are Neural Signals Addressed in Memory?.- 1.3 Elementary Operations Implemented by Associative Memory.- 1.3.1 Associative Recall.- 1.3.2 Production of Sequences from the Associative Memory.- 1.3.3 On the Meaning of Background and Context.- 1.4 More Abstract Aspects of Memory.- 1.4.1 The Problem of Infinite-State Memory.- 1.4.2 Invariant Representations.- 1.4.3 Symbolic Representations.- 1.4.4 Virtual Images.- 1.4.5 The Logic of Stored Knowledge.- 2. Pattern Mathematics.- 2.1 Mathematical Notations and Methods.- 2.1.1 Vector Space Concepts.- 2.1.2 Matrix Notations.- 2.1.3 Further Properties of Matrices.- 2.1.4 Matrix Equations.- 2.1.5 Projection Operators.- 2.1.6 On Matrix Differential Calculus.- 2.2 Distance Measures for Patterns.- 2.2.1 Measures of Similarity and Distance in Vector Spaces.- 2.2.2 Measures of Similarity and Distance Between Symbol Strings.- 2.2.3 More Accurate Distance Measures for Text.- 3. Classical Learning Systems.- 3.1 The Adaptive Linear Element (Adaline).- 3.1.1 Description of Adaptation by the Stochastic Approximation.- 3.2 The Perceptron.- 3.3 The Learning Matrix.- 3.4 Physical Realization of Adaptive Weights.- 3.4.1 Perceptron and Adaline.- 3.4.2 Classical Conditioning.- 3.4.3 Conjunction Learning Switches.- 3.4.4 Digital Representation of Adaptive Circuits.- 3.4.5 Biological Components.- 4. A New Approach to Adaptive Filters.- 4.1 Survey of Some Necessary Functions.- 4.2 On the “Transfer Function” of the Neuron.- 4.3 Models for Basic Adaptive Units.- 4.3.1 On the Linearization of the Basic Unit.- 4.3.2 Various Cases of Adaptation Laws.- 4.3.3 Two Limit Theorems.- 4.3.4 The Novelty Detector.- 4.4 Adaptive Feedback Networks.- 4.4.1 The Autocorrelation Matrix Memory.- 4.4.2 The Novelty Filter.- 5. Self-Organizing Feature Maps.- 5.1 On the Feature Maps of the Brain.- 5.2 Formation of Localized Responses by Lateral Feedback.- 5.3 Computational Simplification of the Process.- 5.3.1 Definition of the Topology-Preserving Mapping.- 5.3.2 A Simple Two-Dimensional Self-Organizing System.- 5.4 Demonstrations of Simple Topology-Preserving Mappings.- 5.4.1 Images of Various Distributions of Input Vectors.- 5.4.2 “The Magic TV”.- 5.4.3 Mapping by a Feeler Mechanism.- 5.5 Tonotopic Map.- 5.6 Formation of Hierarchical Representations.- 5.6.1 Taxonomy Example.- 5.6.2 Phoneme Map.- 5.7 Mathematical Treatment of Self-Organization.- 5.7.1 Ordering of Weights.- 5.7.2 Convergence Phase.- 5.8 Automatic Selection of Feature Dimensions.- 6. Optimal Associative Mappings.- 6.1 Transfer Function of an Associative Network.- 6.2 Autoassociative Recall as an Orthogonal Projection.- 6.2.1 Orthogonal Projections.- 6.2.2 Error-Correcting Properties of Projections.- 6.3 The Novelty Filter.- 6.3.1 Two Examples of Novelty Filter.- 6.3.2 Novelty Filter as an Autoassociative Memory.- 6.4 Autoassociative Encoding.- 6.4.1 An Example of Autoassociative Encoding.- 6.5 Optimal Associative Mappings.- 6.5.1 The Optimal Linear Associative Mapping.- 6.5.2 Optimal Nonlinear Associative Mappings.- 6.6 Relationship Between Associative Mapping, Linear Regression, and Linear Estimation.- 6.6.1 Relationship of the Associative Mapping to Linear Regression.- 6.6.2 Relationship of the Regression Solution to the Linear Estimator.- 6.7 Recursive Computation of the Optimal Associative Mapping.- 6.7.1 Linear Corrective Algorithms.- 6.7.2 Best Exact Solution (Gradient Projection).- 6.7.3 Best Approximate Solution (Regression).- 6.7.4 Recursive Solution in the General Case.- 6.8 Special Cases.- 6.8.1 The Correlation Matrix Memory.- 6.8.2 Relationship Between Conditional Averages and Optimal Estimator.- 7. Pattern Recognition.- 7.1 Discriminant Functions.- 7.2 Statistical Formulation of Pattern Classification.- 7.3 Comparison Methods.- 7.4 The Subspace Methods of Classification.- 7.4.1 The Basic Subspace Method.- 7.4.2 The Learning Subspace Method (LSM).- 7.5 Learning Vector Quantization.- 7.6 Feature Extraction.- 7.7 Clustering.- 7.7.1 Simple Clustering (Optimization Approach).- 7.7.2 Hierarchical Clustering (Taxonomy Approach).- 7.8 Structural Pattern Recognition Methods.- 8. More About Biological Memory.- 8.1 Physiological Foundations of Memory.- 8.1.1 On the Mechanisms of Memory in Biological Systems.- 8.1.2 Structural Features of Some Neural Networks.- 8.1.3 Functional Features of Neurons.- 8.1.4 Modelling of the Synaptic Plasticity.- 8.1.5 Can the Memory Capacity Ensue from Synaptic Changes?.- 8.2 The Unified Cortical Memory Model.- 8.2.1 The Laminar Network Organization.- 8.2.2 On the Roles of Interneurons.- 8.2.3 Representation of Knowledge Over Memory Fields.- 8.2.4 Self-Controlled Operation of Memory.- 8.3 Collateral Reading.- 8.3.1 Physiological Results Relevant to Modelling.- 8.3.2 Related Modelling.- 9. Notes on Neural Computing.- 9.1 First Theoretical Views of Neural Networks.- 9.2 Motives for the Neural Computing Research.- 9.3 What Could the Purpose of the Neural Networks be?.- 9.4 Definitions of Artificial “Neural Computing” and General Notes on Neural Modelling.- 9.5 Are the Biological Neural Functions Localized or Distributed?.- 9.6 Is Nonlinearity Essential to Neural Computing?.- 9.7 Characteristic Differences Between Neural and Digital Computers.- 9.7.1 The Degree of Parallelism of the Neural Networks is Still Higher than that of any “Massively Parallel” Digital Computer.- 9.7.2 Why the Neural Signals Cannot be Approximated by Boolean Variables.- 9.7.3 The Neural Circuits do not Implement Finite Automata.- 9.7.4 Undue Views of the Logic Equivalence of the Brain and Computers on a High Level.- 9.8 “Connectionist Models”.- 9.9 How can the Neural Computers be Programmed?.- 10. Optical Associative Memories.- 10.1 Nonholographic Methods.- 10.2 General Aspects of Holographic Memories.- 10.3 A Simple Principle of Holographic Associative Memory.- 10.4 Addressing in Holographic Memories.- 10.5 Recent Advances of Optical Associative Memories.- Bibliography on Pattern Recognition.- References.

Popular Content within this publication 



Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Neurosciences.