Logo - springer
Slogan - springer

Biomedical Sciences - Cancer Research | Lipid Hydroperoxide-Derived Modification of Biomolecules

Lipid Hydroperoxide-Derived Modification of Biomolecules

Series: Subcellular Biochemistry, Vol. 77

Kato, Yoji (Ed.)

2014, VIII, 202 p. 78 illus., 27 illus. in color.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$149.00

(net) price for USA

ISBN 978-94-007-7920-4

digitally watermarked, no DRM

Included Format: PDF and EPUB

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$189.00

(net) price for USA

ISBN 978-94-007-7919-8

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • Provides novel aspects of the nature of lipid hydroperoxides
  • Wide range information from chemistry to pathology related to lipid hydroperoxide
  • Includes methodology of oxidative stress biomarker analyses

This volume focusses on oxidative modifications of lipid molecules and the successive generation of singlet oxygen. The book also covers the secondary adductions of these reactive species with proteins and aminophospholipids. During lipid peroxidation, the initial event is the formation of lipid hydroperoxide, which is followed by an oxidation event that starts a chain-reaction. The formed lipid hydroperoxide gradually decomposes into harmful aldehydes, which are the advanced end-products of lipid peroxidation. The book consists of three sections:

 

Part I, entitled Lipid peroxidation and small molecule adducts focusses on the biochemical events that are involved in lipid peroxidation and to the formation of small molecules like singlet molecular oxygen. This part of the book also introduces the hexanoyl-lysine adduct. Part II, entitled Pathophysiological consequences covers a range of damaging physiological consequences of lipid peroxidation, ranging from atherosclerosis to neurodegenerative disorders. Finally, Part III, entitled Applications for diagnosis and development of functional food looks into potential diagnostic uses of lipid peroxidation, the possible beneficial effects that can be achieved and new assays in food safely that have been developed.

Content Level » Research

Keywords » covalent adducts - lipid hydroperoxide - oxidative stress - singlet oxygen

Related subjects » Cancer Research - Food Science & Nutrition

Table of contents 

Preface. I Lipid peroxidation and small molecule adducts. 1 Lipid hydroperoxides as a source of singlet molecular oxygen. 2 The formation of lipid hydroperoxide-derived amide-type lysine adducts on proteins: a review of current knowledge. 3 Lipid hydroperoxide-derived adduction to amino-phospholipid in biomembrane. 4 Amide-type adduct of dopamine - Plausible cause of Parkinson diseases. 5 Determination of HEL (hexanoyl-lysine adduct): a novel biomarker for omega-6 PUFA oxidation. 6 Hexanoyl-lysine as a deterioration marker for rice during storage. 7 Cholesterol hydroperoxides and their degradation mechanism. II Pathophysiological consequences. 8 Amide-adducts in atherosclerosis. 9 Oxidative Modification of Lipoproteins. 10 Immunochemical Detection of Lipid Hydroperoxide- and Aldehyde-Modified Proteins in Diseases. 11 Role of Lipid Peroxide in the Neurodegenerative Disorders. 12 Lipid Hydroperoxide-Derived Modification of Proteins in Gastrointestinal Tract. III Applications for diagnosis and development of functional food. 13 Low-cost and easy-to-use "on-chip ELISA" for developing health-promoting foods. 14 Hexanoyl-lysine as an oxidative-injured marker - application of development of functional food. 15 Potential role of oxidative protein modification in energy metabolism in exercise. 16 Suppressive effects of cacao polyphenols on the development of atherosclerosis in apolipoprotein E-deficient mice. Index.

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Cancer Research.