Logo - springer
Slogan - springer

Biomedical Sciences | Machine Learning in Medicine

Machine Learning in Medicine

Cleophas, Ton J., Zwinderman, Aeilko H.

2013, XV, 265 p. 44 illus.

Available Formats:

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.


(net) price for USA

ISBN 978-94-007-5824-7

digitally watermarked, no DRM

Included Format: PDF and EPUB

download immediately after purchase

learn more about Springer eBooks

add to marked items


Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.


(net) price for USA

ISBN 978-94-007-5823-0

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days

add to marked items

  • Electronic health records of modern health facilities, are increasingly complex and systematic assessment of these records is virtually impossible without special computationally intensive methods
  • Clinicians and other health professionals are not familiar with these methods, and this book is the first publication that systematically reviews such methods, particularly, for this audience
  • The book is written as a hand-hold presentation also accessible to non-mathematicians, and as a must-read publication for those new to the methods
  • The book includes step by step data analyses in SPSS, and can, therefore, also be used as a cookbook-like guide for those starting with the novel methodologies
Machine learning is a novel discipline concerned with the analysis of large and multiple variables data. It involves computationally intensive methods, like factor analysis, cluster analysis, and discriminant analysis. It is currently mainly the domain of computer scientists, and is already commonly used in social sciences, marketing research, operational research and applied sciences. It is virtually unused in clinical research. This is probably due to the traditional belief of clinicians in clinical trials where multiple variables are equally balanced by the randomization process and are not further taken into account. In contrast, modern computer data files often involve hundreds of variables like genes and other laboratory values, and computationally intensive methods are required. This book was written as a hand-hold presentation accessible to clinicians, and as a must-read publication for those new to the methods.

Content Level » Popular/general

Keywords » cluster analysis - data mining - discriminant analysis - factor analysis - machine learning

Related subjects » Biomedical Sciences - Entomology - Image Processing - Medicine - Statistics

Table of contents / Preface / Sample pages 

Popular Content within this publication 



Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Biomedicine (general).