Logo - springer
Slogan - springer

Biomedical Sciences | Kisspeptin Signaling in Reproductive Biology

Kisspeptin Signaling in Reproductive Biology

Kauffman, Alexander S., Smith, Jeremy T. (Eds.)

2013, XII, 514 p. 100 illus., 58 illus. in color.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$149.00

(net) price for USA

ISBN 978-1-4614-6199-9

digitally watermarked, no DRM

Included Format: PDF and EPUB

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$189.00

(net) price for USA

ISBN 978-1-4614-6198-2

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • Focuses on kisspeptin and its role in reproductive biology
  • Looks at interactions between Kisspeptin and Neurokinin B
  • Reviews model systems for studying kisspeptin signaling
Kisspeptin has been shown to be both necessary and sufficient for activation of the reproductive axis, during puberty and later in adulthood.  This makes kisspeptin a fundamental component of the reproductive axis. Kisspeptin has been deemed the single most potent stimulator of GnRH neurons yet known.  The importance of kisspeptin has been documented in humans as well as non-human animal models, ranging from monkeys, sheep, and rodents to numerous fish species, thus signifying a highly conserved nature of its reproductive function.  Importantly, kisspeptin neurons seem to mediate many of the regulatory effects of other signals, whether they are metabolic, circadian, hormonal, or stress. This places kisspeptin neurons in a unique position to be key nodal points and conduits for conveying numerous endogenous and exogenous signals to the reproductive axis.

Content Level » Research

Related subjects » Biomedical Sciences - Gynecology - Internal Medicine - Neuroscience

Table of contents / Preface / Sample pages 

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Biomedicine (general).