Skip to main content

Dense Matter in Compact Stars

A Pedagogical Introduction

  • Book
  • © 2010

Overview

  • The most elementary and concise introduction to this topic
  • Guides the reader rapidly towards a level suitable for own research through a "learning by doing" approach
  • Written in a style suitable as either textbook or for self-study
  • Includes supplementary material: sn.pub/extras

Part of the book series: Lecture Notes in Physics (LNP, volume 811)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 49.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (6 chapters)

Keywords

About this book

The purpose and motivation of these lectures can be summarized in the following two questions: • What is the ground state (and its properties) of dense matter? • What is the matter composition of a compact star? The two questions are, of course, strongly coupled to each other. Depending on your point of view, you can either consider the ?rst as the main question and the second as a consequence or application of the ?rst, or vice versa. If you are interested in fundamental questions in particle physics you may take the former point of view: you ask the question what happens to matter if you squeeze it more and more. This leads to fundamental questions because at some level of suf?cient squeezing you expect to reach the point where the fundamental degrees of freedom and their interactions become important. That is, at some point you will reach a form of matter where not molecules or atoms, but the constituents of an atom, namely neutrons, protons, and electrons, are the relevant degrees of freedom.

Authors and Affiliations

  • , Institute for Theoretical Physics, Technical University of Vienna, Vienna, Austria

    Andreas Schmitt

Bibliographic Information

Publish with us