Logo - springer
Slogan - springer

About Springer - Media - Springer Select | Cosmology in a petri dish

New York / Heidelberg, 26 January 2012

Cosmology in a petri dish

To understand long-range interactions between particles at the micrometric scale, researchers utilize methods which are used to study the formation of our universe.

Scientists have found that micron-size particles which are trapped at fluid interfaces exhibit a collective dynamic that is subject to seemingly unrelated governing laws. These laws show a smooth transitioning from long-ranged cosmological-style gravitational attraction down to short-range attractive and repulsive forces. The study by Johannes Bleibel from the Max Planck Institute for Intelligent Systems in Stuttgart, Germany, and his colleagues has just been published in the journal EPJ E¹ .
The authors used so-called colloidal particles that are larger than molecules but too small to be observed with the naked eye. These particles are adsorbed at the interface between two fluids and assembled into a monolayer. This constitutes a 2D model in which particles that are larger than a micron deform the interface through their own weight and generate an effective long-range attraction which looks like gravitation in 2D. Thus, the particles assemble in clusters.
To model long-range forces between particles, the researchers used numerical simulations based on random movement of particles, known as Brownian dynamics. Here, they took advantage of the formal analogy between so-called capillary attraction – the long-ranged interaction through interface deformation – and gravitational attraction. They used a particle-mesh method as employed in simulations of what are known as self-gravitating fluids, corresponding to the collapse of a system under its own gravity, traditionally used in cosmological studies.
The authors also found that this long-range interaction no longer matters beyond a certain length determined by the properties of both the particles and the interface, and short-range forces come into play. This means that for systems exceeding this length, particles first tend to self-assemble into several clusters which eventually merge into a single, large cluster.
The study of monolayer aggregates of micron-size colloids is used as a template for nanoparticles deposited onto substrates in nanotechnology applications.
1. Bleibel J, Domınguez A, Oettel M, Dietrich S (2011). Collective dynamics of colloids at fluid interfaces, European Physical Journal E (EPJ E) 34:125, DOI: 10.1140/epje/i2011-11125-2

Further Information: