Skip to main content
Book cover

Reactive Modifiers for Polymers

  • Book
  • © 1997

Overview

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (9 chapters)

Keywords

About this book

Chemical modification of polymers by reactive modifiers is no longer an academic curiosity but a commercial reality that has delivered a diverse range of speciality materials for niche markets: reactively grafted styrenic alloys, maleated polyolefins, super-tough nylons, silane modified and moisture-cured polyolefins, and thermoplastic elastomers, are but few exam­ ples of commercial successes. Although the approach of reactive modification of polymers has been largely achieved either in solution or in the solid state (through in situ reactions in polymer melts), it is the latter route that has attracted most attention in the last two decades owing to its flexibility and cost-effective­ ness. This route, referred to as reactive processing, focuses on the use of suitable reactive modifier(s) and the adoption of conventional polymer processing machinery, an extruder or a mixer, as a chemical reactor, to perform in situ targeted reactions for chemical modification of preformed polymers. This relatively simple, though scientifically highly challenging, approach to reactive modification offers unique opportunities in exploiting various reactive modifiers for the purpose of altering and transforming in a controlled manner the properties of preformed commercial polymers into new/speciality materials with tailor-made properties and custom-designed performance for target applications. Such an economically attractive route constitutes a radical diversion away from the traditional practices of manufacturing new polymers from monomers which involves massive in­ vestments in sophisticated technologies and chemical plants.

Editors and Affiliations

  • Polymer Processing and Performance Group, Department of Chemical Engineering and Applied Chemistry, Aston University, Birmingham, UK

    S. Al-Malaika

Bibliographic Information

Publish with us