Skip to main content
Book cover

Advanced Electrical Drives

Analysis, Modeling, Control

  • Textbook
  • © 2011

Overview

  • Ideal Rotating Transformer-IRTF+Universal Field Oriented-UFO allows comprehensive and insightful AC electrical machines and drives analysis Introduces new modeling methods + modern control techniques for switched reluctance drives Numerous tutorials at end of chapters, to learn by doing, step-by-step Extra material has ‘build and play’ modules of tutorials plus figures for lecturing and studying material
  • Includes supplementary material: sn.pub/extras

Part of the book series: Power Systems (POWSYS)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (10 chapters)

Keywords

About this book

Electrical drives convert in a controlled manner, electrical energy into mechanical energy. Electrical drives comprise an electrical machine, i.e. an electro-mechanical energy converter, a power electronic converter, i.e. an electrical-to-electrical converter, and a controller/communication unit. Today, electrical drives are used as propulsion systems in high-speed trains, elevators, escalators, electric ships, electric forklift trucks and electric vehicles. Advanced control algorithms (mostly digitally implemented) allow torque control over a high-bandwidth. Hence, precise motion control can be achieved. Examples are drives in robots, pick-and-place machines, factory automation hardware, etc.

Most drives can operate in motoring and generating mode. Wind turbines use electrical drives to convert wind energy into electrical energy. More and more, variable speed drives are used to save energy for example, in air-conditioning units, compressors, blowers, pumps and home appliances.

Key to ensure stable operation of a drive in the aforementioned applications are torque control algorithms. In Advanced Electrical Drives, a unique approach is followed to derive model based torque controllers for all types of Lorentz force machines, i.e. DC, synchronous and induction machines. The rotating transformer model forms the basis for this generalized modeling approach that ultimately leads to the development of universal field-oriented control algorithms. In case of switched reluctance machines, torque observers are proposed to implement direct torque algorithms.

From a didactic viewpoint, tutorials are included at the end of each chapter. The reader is encouraged to execute these tutorials to familiarize him or herself with all aspects of drive technology. Hence, Advanced Electrical Drives encourages “learning by doing”. Furthermore, the experienced drive specialist may find the simulation tools useful to design high-performancecontrollers for all sorts of electrical drives.

Reviews

From the reviews:

“The book is written for those who have a desire or need to understand the intricacies of modern electrical drives.” (IEEE Control Systems Magazine, Vol. 31, August, 2011)

Authors and Affiliations

  • Inst. Power Electronics & Electr. Drives, (ISEA), RWTH Aachen University, Aachen, Germany

    Rik De Doncker

  • Zener Electric Pty Ltd., Milperra, Sydney, Australia

    Duco W.J. Pulle

  • TU Eindhoven, Eindhoven, Netherlands

    André Veltman

About the authors

Rik W. De Doncker (M'87 SM'99 F'01) received his Ph.D. degree (summa cum laude) in electrical engineering from the Katholieke Universiteit Leuven, Leuven, Belgium in 1986. In 1987, he was appointed a Visiting Associate Professor at the University of Wisconsin, Madison, where he lectured and conducted research on high-performance induction motor drives. In 1988, he was a General Electric Company Fellow in the microelectronic center, IMEC, Leuven, Belgium. In December 1988, he joined the General Electric Company Corporate Research and Development Center, Schenectady, NY, where he led research on drives and high-power soft-switching converters, ranging from 100 kW to 4 MW, for aerospace, industrial, and traction applications. In November 1994, he joined Silicon Power Corporation (formerly GE-SPCO) as Vice President, Technology. He worked on high-power converter systems and MTO devices and was responsible for the development and production of a 15-kV medium-voltage thyristor based transfer switch. Since October 1996, he has been a professor at Aachen University of Technology, Aachen, Germany, where he leads the Institute for Power Electronics and Electrical Drives. In Oct. 2006 he was also appointed director of the E.ON Energy Research Center at RWTH Aachen University, where he leads the Institute for Power Generation and Storage Systems. He has published over 170 technical papers and is holder of 25 patents, with several pending. Currently, Dr. De Doncker is member of the Board of the German engineering Society VDE-ETG. He is past president of the IEEE Power Electronics Society (PELS). He is member of the EPE Executive Council. He was founding Chairman of the German IEEE IAS-PELS Joint Chapter. Dr. De Doncker is recipient of the IAS Outstanding Achievements Award and the IEEE Power Engineering Custom Power Award (2008).

Bibliographic Information

  • Book Title: Advanced Electrical Drives

  • Book Subtitle: Analysis, Modeling, Control

  • Authors: Rik De Doncker, Duco W.J. Pulle, André Veltman

  • Series Title: Power Systems

  • DOI: https://doi.org/10.1007/978-94-007-0181-6

  • Publisher: Springer Dordrecht

  • eBook Packages: Engineering, Engineering (R0)

  • Copyright Information: Springer Science+Business Media B.V. 2011

  • eBook ISBN: 978-94-007-0181-6Published: 30 November 2010

  • Series ISSN: 1612-1287

  • Series E-ISSN: 1860-4676

  • Edition Number: 1

  • Number of Pages: XVIII, 462

  • Number of Illustrations: 343 illustrations in colour

  • Topics: Power Electronics, Electrical Machines and Networks, Control, Robotics, Mechatronics

Publish with us