Skip to main content

Computational Partial Differential Equations

Numerical Methods and Diffpack Programming

  • Textbook
  • © 1999

Overview

  • The only textbook teaching computational PDEs together with Diffpack
  • Includes supplementary material: sn.pub/extras

Part of the book series: Lecture Notes in Computational Science and Engineering (LNCSE, volume 2)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (7 chapters)

Keywords

About this book

During the last decades there has been a tremendous advancement of com­ puter hardware, numerical algorithms, and scientific software. Engineers and scientists are now equipped with tools that make it possible to explore real­ world applications of high complexity by means of mathematical models and computer simulation. Experimentation based on numerical simulation has become fundamental in engineering and many of the traditional sciences. A common feature of mathematical models in physics, geology, astrophysics, mechanics, geophysics, as weH as in most engineering disciplines, is the ap­ pearance of systems of partial differential equations (PDEs). This text aims at equipping the reader with tools and skills for formulating solution methods for PDEs and producing associated running code. Successful problem solving by means of mathematical models inscience and engineering often demands a synthesis of knowledge from several fields. Besides the physical application itself, one must master the tools of math­ ematical modeling, numerical methods, as weH as software design and im­ plementation. In addition, physical experiments or field measurements might play an important role in the derivation and the validation of models. This book is written in the spirit of computational sciences as inter-disciplinary activities. Although it would be attractive to integrate subjects like mathe­ matics, physics, numerics, and software in book form, few readers would have the necessary broad background to approach such a text.

Authors and Affiliations

  • Mechanics Division, Department of Mathematics, University of Oslo, Oslo, Norway

    Hans Petter Langtangen

Bibliographic Information

Publish with us