Skip to main content

Charm Production in Deep Inelastic Scattering

Mellin Moments of Heavy Flavor Contributions to F2(x,Q^2) at NNLO

  • Book
  • © 2012

Overview

  • Presents a new and more accurate description of quark production in particle experiments
  • Selected by the German Physical Society for a Dissertation Award 2011
  • Develops new mathematical tools
  • Includes supplementary material: sn.pub/extras

Part of the book series: Springer Theses (Springer Theses)

  • 3196 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (11 chapters)

Keywords

About this book

The production of heavy quarks in high-energy experiments offers a rich field to study, both experimentally and theoretically. Due to the additional quark mass, the description of these processes in the framework of perturbative QCD is much more demanding than it is for those involving only massless partons. In the last two decades, a large amount of precision data has been collected by the deep inelastic HERA experiment. In order to make full use of these data, a more precise theoretical description of charm quark production in deep inelastic scattering is needed. This work deals with the first calculation of fixed moments of the NNLO heavy flavor corrections to the proton structure function F2 in the limit of a small charm-quark mass. The correct treatment of these terms will allow not only a more precise analysis of the HERA data, but starting from there also a more precise determination of the parton distribution functions and the strong coupling constant, which is an essential input for LHC physics.
The complexity of this calculation requires the application and development of technical and mathematical methods, which are also explained here in detail.

Authors and Affiliations

  • , Center of Physics, Inst. for Theoretical Particle Physics, Aachen, Germany

    Sebastian Klein

Bibliographic Information

Publish with us