Skip to main content
Book cover

Several Complex Variables VII

Sheaf-Theoretical Methods in Complex Analysis

  • Book
  • © 1994

Overview

Part of the book series: Encyclopaedia of Mathematical Sciences (EMS, volume 74)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (10 chapters)

Keywords

About this book

Of making many books there is no end; and much study is a weariness of the flesh. Eccl. 12.12. 1. In the beginning Riemann created the surfaces. The periods of integrals of abelian differentials on a compact surface of genus 9 immediately attach a g­ dimensional complex torus to X. If 9 ~ 2, the moduli space of X depends on 3g - 3 complex parameters. Thus problems in one complex variable lead, from the very beginning, to studies in several complex variables. Complex tori and moduli spaces are complex manifolds, i.e. Hausdorff spaces with local complex coordinates Z 1, ... , Zn; holomorphic functions are, locally, those functions which are holomorphic in these coordinates. th In the second half of the 19 century, classical algebraic geometry was born in Italy. The objects are sets of common zeros of polynomials. Such sets are of finite dimension, but may have singularities forming a closed subset of lower dimension; outside of the singular locus these zero sets are complex manifolds.

Editors and Affiliations

  • Mathematisches Institut, Universität Göttingen, Göttingen, Germany

    H. Grauert

  • Mathematisches Institut, Universität Bayreuth, Bayreuth, Germany

    Th. Peternell

  • Mathematisches Institut, Universität Münster, Münster, Germany

    R. Remmert

Bibliographic Information

Publish with us