Skip to main content
Book cover

Nano-photonics in III-V Semiconductors for Integrated Quantum Optical Circuits

  • Book
  • © 2014

Overview

  • Nominated as an outstanding Ph.D. thesis by the University of Sheffield, UK
  • Details current research at the forefront of experimental semiconductor physics, with applications in photonics and quantum information processing
  • Includes an insightful introduction to this experimental field written by a post-graduate researcher, for post-graduate researchers
  • Presents detailed descriptions of the micro-photoluminescence set-ups and optical spectroscopy experiments used to obtain the results discussed

Part of the book series: Springer Theses (Springer Theses)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (8 chapters)

Keywords

About this book

This thesis breaks new ground in the physics of photonic circuits for quantum optical applications. The photonic circuits are based either on ridge waveguides or photonic crystals, with embedded quantum dots providing the single qubit, quantum optical emitters. The highlight of the thesis is the first demonstration of a spin-photon interface using an all-waveguide geometry, a vital component of a quantum optical circuit, based on deterministic single photon emission from a single quantum dot. The work makes a further important contribution to the field by demonstrating the effects and limitations that inevitable disorder places on photon propagation in photonic crystal waveguides, a further key component of quantum optical circuits. Overall the thesis offers a number of highly novel contributions to the field; those on chip circuits may prove to be the only means of scaling up the highly promising quantum-dot-based quantum information technology.

Authors and Affiliations

  • Deptment of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom

    Nicholas Andrew Wasley

About the author

As a Manx Russell-Willis Scholar, Nicholas obtained an MPhys Physics degree with first class honours from the University of Manchester in 2009. He subsequently conducted PhD research in the Low Dimensional Structures and Devices group of the Department of Physics and Astronomy at the University of Sheffield under the supervision of Prof M. Skolnick (FRS), completing his thesis in January 2013. Nicholas has co-authored five peer-reviewed papers and presented work at a number of conferences including ICPS 2012 where he was nominated for the Young Scientist Best Paper Award. Nicholas currently works as a physicist for Sagentia in Harston, Cambridge.

Bibliographic Information

Publish with us