Skip to main content
Book cover

Beam Diagnostics in Superconducting Accelerating Cavities

The Extraction of Transverse Beam Position from Beam-Excited Higher Order Modes

  • Book
  • © 2013

Overview

  • Nominated as an outstanding Ph.D. thesis by the Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
  • The author is the winner of the 2011 European Accelerator Prize for promising young researchers
  • A valuable didactic introduction for students and scientists new to the field of rf diagnostics
  • Provides a detailed survey of various dimension reduction methods applicable for rf diagnostics
  • Includes supplementary material: sn.pub/extras

Part of the book series: Springer Theses (Springer Theses)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (7 chapters)

Keywords

About this book

An energetic charged particle beam introduced to an rf cavity excites a wakefield therein. This wakefield can be decomposed into a series of higher order modes and multipoles, which for sufficiently small beam offsets are dominated by the dipole component. This work focuses on using these dipole modes to detect the beam position in third harmonic superconducting S-band cavities for light source applications. A rigorous examination of several means of analysing the beam position based on signals radiated to higher order modes ports is presented. Experimental results indicate a position resolution, based on this technique, of 20 microns over a complete module of 4 cavities. Methods are also indicated for improving the resolution and for applying this method to other cavity configurations. This work is distinguished by its clarity and potential for application to several other international facilities. The material is presented in a didactic style and is recommended both for students new to the field, and for scientists well-versed in the field of rf diagnostics.

Authors and Affiliations

  • BE-RF, CERN, Geneva 23, Switzerland

    Pei Zhang

About the author

The author read physics at the University of Science and Technology of China (USTC) in Hefei from 2002 to 2006. After graduating with a BSc in applied physics, he worked at CERN in Geneva for one year as a visiting scholar employed by the University of Michigan (Ann Arbor). In 2009, he was awarded a MSc in Particle Physics from USTC. Subsequently he joined the accelerator group at the University of Manchester to pursue a Ph.D. and was based at DESY (Hamburg). After successfully defending his Ph.D. thesis in December 2012, he joined the BE-RF group at CERN as a Marie-Curie Experienced Researcher.

Bibliographic Information

Publish with us