Skip to main content

Structure Analysis by Small-Angle X-Ray and Neutron Scattering

  • Book
  • © 1987

Overview

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (9 chapters)

  1. Small-Angle Scattering and the Structure of Matter

  2. Monodisperse Systems

  3. Polymers and Inorganic Materials

  4. Instrumentation and Data Analysis

Keywords

About this book

Small-angle scattering of X rays and neutrons is a widely used diffraction method for studying the structure of matter. This method of elastic scattering is used in various branches of science and technology, includ­ ing condensed matter physics, molecular biology and biophysics, polymer science, and metallurgy. Many small-angle scattering studies are of value for pure science and practical applications. It is well known that the most general and informative method for investigating the spatial structure of matter is based on wave-diffraction phenomena. In diffraction experiments a primary beam of radiation influences a studied object, and the scattering pattern is analyzed. In principle, this analysis allows one to obtain information on the structure of a substance with a spatial resolution determined by the wavelength of the radiation. Diffraction methods are used for studying matter on all scales, from elementary particles to macro-objects. The use of X rays, neutrons, and electron beams, with wavelengths of about 1 A, permits the study of the condensed state of matter, solids and liquids, down to atomic resolution. Determination of the atomic structure of crystals, i.e., the arrangement of atoms in a unit cell, is an important example of this line of investigation.

Authors, Editors and Affiliations

  • Princeton Resources, Princeton, USA

    George W. Taylor

  • Institute of Crystallography, Academy of Sciences of the USSR, Moscow, USSR

    L. A. Feigin, D. I. Svergun

Bibliographic Information

Publish with us