Skip to main content
  • Book
  • © 2013

Fractal Geometry, Complex Dimensions and Zeta Functions

Geometry and Spectra of Fractal Strings

  • The Riemann hypothesis is given a natural geometric reformulation in the context of vibrating fractal strings
  • Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary
  • Numerous theorems, examples, remarks and illustrations enrich the text

Part of the book series: Springer Monographs in Mathematics (SMM)

Buy it now

Buying options

eBook USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

This is a preview of subscription content, log in via an institution to check for access.

Table of contents (13 chapters)

  1. Front Matter

    Pages i-xxvi
  2. Complex Dimensions of Ordinary Fractal Strings

    • Michel L. Lapidus, Machiel van Frankenhuijsen
    Pages 9-32
  3. Complex Dimensions of Self-Similar Fractal Strings

    • Michel L. Lapidus, Machiel van Frankenhuijsen
    Pages 33-63
  4. Generalized Fractal Strings Viewed as Measures

    • Michel L. Lapidus, Machiel van Frankenhuijsen
    Pages 119-135
  5. Explicit Formulas for Generalized Fractal Strings

    • Michel L. Lapidus, Machiel van Frankenhuijsen
    Pages 137-178
  6. The Geometry and the Spectrum of Fractal Strings

    • Michel L. Lapidus, Machiel van Frankenhuijsen
    Pages 179-212
  7. Periodic Orbits of Self-Similar Flows

    • Michel L. Lapidus, Machiel van Frankenhuijsen
    Pages 213-235
  8. Fractal Tube Formulas

    • Michel L. Lapidus, Machiel van Frankenhuijsen
    Pages 237-270
  9. Riemann Hypothesis and Inverse Spectral Problems

    • Michel L. Lapidus, Machiel van Frankenhuijsen
    Pages 271-281
  10. Generalized Cantor Strings and their Oscillations

    • Michel L. Lapidus, Machiel van Frankenhuijsen
    Pages 283-295
  11. Critical Zeros of Zeta Functions

    • Michel L. Lapidus, Machiel van Frankenhuijsen
    Pages 297-332
  12. Fractality and Complex Dimensions

    • Michel L. Lapidus, Machiel van Frankenhuijsen
    Pages 333-371
  13. New Results and Perspectives

    • Michel L. Lapidus, Machiel van Frankenhuijsen
    Pages 373-483
  14. Back Matter

    Pages 485-567

About this book

Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary.

Key Features of this Second Edition:

The Riemann hypothesis is given a natural geometric reformulation in the context of vibrating fractal strings

Complex dimensions of a fractal string, defined as the poles of an associated zeta function, are studied in detail, then used to understand the oscillations intrinsic to the corresponding fractal geometries and frequency spectra

Explicit formulas are extended to apply to the geometric, spectral, and dynamical zeta functions associated with a fractal

Examples of such explicit formulas include a Prime Orbit Theorem with error term for self-similar flows, and a geometric tube formula

The method of Diophantine approximation is used to study self-similar strings and flows

Analytical and geometric methodsare used to obtain new results about the vertical distribution of zeros of number-theoretic and other zeta functions

Throughout, new results are examined and a new definition of fractality as the presence of nonreal complex dimensions with positive real parts is presented. The new final chapter discusses several new topics and results obtained since the publication of the first edition.

The significant studies and problems illuminated in this work may be used in a classroom setting at the graduate level. Fractal Geometry, Complex Dimensions and Zeta Functions, Second Edition will appeal to students and researchers in number theory, fractal geometry, dynamical systems, spectral geometry, and mathematical physics.

Reviews

“This interesting volume gives a thorough introduction to an active field of research and will be very valuable to graduate students and researchers alike.” (C. Baxa, Monatshefte für Mathematik, Vol. 180, 2016)

“In this research monograph the authors provide a mathematical theory of complex dimensions of fractal strings and its many applications. … The book is written in a self-contained manner the results … are completely proved. I appreciate that the book is useful for mathematicians, students, researchers, postgraduates, physicians and other specialists which are interested in studying the fractals and dimension theory.” (Philosophy, Religion and Science Book Reviews, bookinspections.wordpress.com, April, 2013)

“The authors provide a mathematical theory of complex dimensions of fractal strings and its many applications. … The book is written in a self-contained manner, the results (including some fundamental ones) are completely proved. … the book will be useful to mathematicians, students, researchers, postgraduates, physicians and other specialists which are interested in studying fractals and dimension theory.” (Nicolae-Adrian Secelean, Zentralblatt MATH, Vol. 1261, 2013)

"In this book the author encompasses a broad range of topics that connect many areas of mathematics, including fractal geometry, number theory, spectral geometry, dynamical systems, complex analysis, distribution theory and mathematical physics. The book is self containing, the material organized in chapters preceding by an introduction and finally there are some interesting applications of the theory presented. ...The book is very well written and organized and the subject is very interesting and actual and has many applications." -- Nicolae-Adrian Secelean for Zentralblatt MATH

"This highly original self-contained book will appeal to geometers, fractalists, mathematical physicists and number theorists, as well as to graduate students in these fields andothers interested in gaining insight into these rich areas either for its own sake or with a view to applications. They will find it a stimulating guide, well written in a clear and pleasant style." -- Mathematical Reviews (Review of previous book by authors)

"It is the reviewera (TM)s opinion that the authors have succeeded in showing that the complex dimensions provide a very natural and unifying mathematical framework for investigating the oscillations in the geometry and the spectrum of a fractal string. The book is well written. The exposition is self-contained, intelligent and well paced." -- Bulletin of the London Mathematical Society (Review of previous book by authors)

"The new approach and results on the important problems illuminated in this work will appeal to researchers and graduate students in number theory, fractal geometry, dynamical systems, spectral geometry, and mathematical physics." -- Simulation News Europe (Review of previous book by authors)

Authors and Affiliations

  • Dept. Mathematics, University of California, Riverside, Riverside, USA

    Michel L. Lapidus

  • Department of Mathematics, Utah Valley State College, Orem, USA

    Machiel van Frankenhuijsen

Bibliographic Information

Buy it now

Buying options

eBook USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access