Skip to main content

Environmental Simulation Chambers: Application to Atmospheric Chemical Processes

  • Conference proceedings
  • © 2006

Overview

  • Unique collection and descriptions of the different types of environmental chambers used in research
  • Examples of the many different types of experiment which can be performed in chambers
  • A review on the status of environmental chemistry research in eastern European countries

Part of the book series: NATO Science Series: IV: (NAIV, volume 62)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (36 papers)

Keywords

About this book

Atmospheric pollution has many different detrimental impacts on air quality at urban, regional and global scales. Large volume photoreactors (often referred to as smog or simulation chambers) have been used very effectively to investigate and understand many varied aspects of atmospheric chemistry related to air pollution problems. Photochemical smog formation, which was first observed around 1945 in Los Angeles, is now a major environmental problem for all industrialised and densely populated regions of the world. Over the years many different modelling and experimental tools have been developed to analyse and simulate the complex chemical processes associated with tropspheric photooxidant formation. Work in environmental chambers has played a key role in the development of our understanding of the atmospheric chemistry associated with pollution problems on local, regional and global scales. Chamber observations have also been used in connection with environmental policy issues. In general they are used for validation of atmospheric chemical models, studies of chemical reaction mechanisms and as a direct means to test the possible impact of specific chemical compounds on air quality under simulated ambient conditions New large smog chamber installations have been recently developed in the US (Riverside, California), Europe (Jülich, Germany) and Japan, and a large number of smaller scale laboratory chambers are in operation around the world. Over the years there have been numerous new technical developments related to environmental chamber facilities such as the design of the chambers (e. g.

Editors and Affiliations

  • Physical Chemistry Dept., Bergische University Wuppertal, Germany

    Ian Barnes

  • Institute of Physical Chemistry of the PAS, Warsaw, Poland

    Krzysztof J. Rudzinski

Bibliographic Information

Publish with us