Skip to main content

Optical Imaging of Cancer

Clinical Applications

  • Book
  • © 2010

Overview

  • Covers a wide array of areas including optical imaging principles and potential clinical applications

  • Includes supplementary material: sn.pub/extras

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (12 chapters)

  1. Part I: Optical Imaging Principles

  2. Part II: Cancer Targeting Strategies

  3. Part III: Preclinical and Clinical Investigations

Keywords

About this book

To describe principles of optical imaging including chemistry and physics of fluorescence, limitations/advantages of optical imaging compared to metabolic and anatomic imaging.

Describe hardware adapted for small animal imaging and for clinical applications: endoscopes and operative microscopes.

Outline FDA approved and newer optical imaging probes. Include discussion of chemistry and linkage to other proteins. Review current techniques to image cancer and the development of techniques to specifically image cancer cells.

Review use of exploiting differences in tissue autofluorescence to diagnose and treat cancer. Include agents such as 5-aminoleculinic acid.

Review mechanisms that require proteolytic processing within the tumor to become active fluorophores.

Review use of cancer selective proteins to localize probes to cancer cells: include toxins, antibodies, and minibodies.

Introduction of plasmids, viruses or other genetic material may be used to express fluorescent agents in vivo. This chapter will review multiple vectors and delivery mechanisms of optical imaging cassettes.Preclinical investigations into the use of optical contrast agents for the detection of primary tumors in conventional and orthotopic models will be discussed.

Preclinical investigations into the use of optical contrast agents for the detection of metastatic tumors in mouse models will be discussed.

Use of targeted and non-specific optical contrast agents have been used for the detection of sentinel lymph node detection. These applications and how they differ from other applications will be discussed.

Because of the unique difficulty of identifying tumor from normal tissue in brain tissue, a separate chapter would be needed. More clinical data is available for this cancer type than any other.

Discussion of potential clinical applications for optical imaging and an assessment of the potential market.

Editors and Affiliations

  • University of Alabama, Birmingham, Birmingham, U.S.A.

    Eben Rosenthal

  • Dept. Radiology, University of Alabama, Birmingham, Birmingham, U.S.A.

    Kurt R. Zinn

Bibliographic Information

  • Book Title: Optical Imaging of Cancer

  • Book Subtitle: Clinical Applications

  • Editors: Eben Rosenthal, Kurt R. Zinn

  • DOI: https://doi.org/10.1007/978-0-387-93874-5

  • Publisher: Springer New York, NY

  • eBook Packages: Biomedical and Life Sciences, Biomedical and Life Sciences (R0)

  • Copyright Information: Springer-Verlag New York 2010

  • Hardcover ISBN: 978-0-387-93873-8Published: 13 October 2009

  • Softcover ISBN: 978-1-4939-3932-9Published: 23 August 2016

  • eBook ISBN: 978-0-387-93874-5Published: 03 October 2009

  • Edition Number: 1

  • Number of Pages: XIII, 272

  • Additional Information: Jointly published with Praxis Publishing

  • Topics: Cancer Research, Oncology, Pharmacology/Toxicology

Publish with us